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The Calculus of M-Estimation by Stefanski and Boos gives a basic introduction and application
to M-Estimation. An M-estimator @ is an estimator of @ that satisfies

ZT/’(Yné) =0, (1)

i=1

where Y1,...,Y,, are independent random vectors, 6 is a p-dimensional parameter, and ) is a
known (p x 1)-functional that does not depend on ¢ nor n. While many common estimators are not
M-estimators, they can be written in the form of an M-estimator called partial M-estimators. A
partial M-estimator is an estimator that alone is not an M-estimator, but is a component of an M-
estimator. For example, the mean deviation from the sample mean, 6; = n~! S Vi =Y because
there is no suitable 4 function such that > ; ¢ (Y;,0) = 0 yields 6,. However, this is a partial
M-estimator since when combined with 5 = Y and the two functionals 1(y,01,02) = |y — 02| — 64
and ¥9(y, 01,02) = y — 02, we have

" NN . (|Yi—92|—é1) (0
;w(Yi,el,HZ) - 21?1 (YZ —é2> = ( 0 ) .

In addition to M-estimators, we will see later that we can add v functions to handle delta-method
asymptotics for transformations of parameters, i.e. M-estimators are robust.

The basic approach of M-estimation is derived in section 2 of the paper. Assume, for now, that
Y1, ..., Y, are iid with distribution function F. The true parameter 8 is defined by

Er(4(¥1,00) = / 4 (y.00) f(y)dy = 0. ()

If (2) above determines 6y uniquely, then there exists a sequence of M-estimators {én} such that
6, 5 0. Define the function G,(8) = n~! Yo (Y;,0). A Taylor expansion about the true
parameter 0y gives

0 = G (6) = Gn(80) + G,(60) (6 — 60) + R,

where G/, (6y) = agg:(pe) . Rearranging the expansion, we arrive to
6=0¢

A~

Vil —00) = [~ G (00)] " ViGa(60) + ViR,



Define 4/(y, 8) = 228 By the WLLN, as n — oo, we have

1 n
~G},(00) = — ; [ 4/(%;,60)] 5 E[—9'(v1,60)] = A60).
Therefore, by CLT, we have
VG (80) 5 MVN(0, B(6)),

where B(6y) = E[(Y1, 00)9(Y1,00)T]. Note that v/nR’ = 0, which is difficult to prove, but holds
under general assumptions. Combining the above results and appealing to Slutsky’s Theorem, we

conclude that V(8
6 ~ AMN (90, ( 0))
n

as n — oo, where V(0y) = A(Bo)*lB(Bo){A(HO)*l}T. Lastly, this work can be extended beyond
equation (1). Suppose that we have an estimator, 6, that satisfies

Z ’d)(}/u é) = Cn,
=1

where ¢, /y/n % 0. Repeating the derivations as before with the sole change that ¢, /+/n is absorbed
into the remainder quantity /nR}, we arrive to the empirical estimators of A (6y) and B(6y),

AWY,0)=-GL0) = > [~ w(%,6).
=1
and .
B(Y,8) = - Y (¥, 0)$(v.,6)"
=1
and

Va(Y,60) = Ay(Y,0)'B,(Y,0){A,(Y,0)"}"

These ideas are now illustrated with examples.

The first example to illustrate M-estimation is to estimate the population mean and variance,
u, and 2. Let @ = (Y,s2)T be the M-estimator defined by

o= ( (v; ?0531— 2 ) '

Denoting the true parameter values by 6y = (010, 020), we have

A(6)) :E[—W(Yheo)} —E( z(yll_glo) (1) ) - ( é (1) )

since E(Y1) = 010. Also, the matrix
B(8) = E[$(Y1,60)w (v, 60)" ]

2



has elements

B(6o)11 = [ Yl —010)%] = b0 = o*
)((

Y1 — 610)% — 029)] = pz — 0 = p3

2—920)}_,“4—0’4,

n

1 _
B, (Y =—) (V;-Y)?=¢
(Y,0)11 nE( )" = s,

=1
n

Bo(Y,0)12 = B (Y, 0)1 — %Z(Yi V(Y- 7Y - 2) = mg
i=1

B (Y, 0 == L3 (4 -V )" = mu — 5}
=1

where my denotes the kth sample moment. Since the matrix A(6y) need not be estimated, we
simply have V,,(Y,0) = B,(Y,0). Attached in the appendix is a simulation illustrating this
example.

The second example of the paper shows how we can estimate the ratio of two population means.
Let 0 =Y /X, where (Y1, X1), ..., (Y, X,,) are iid samples with E(Y7) = py and E(X;) = ux # 0,
Var(Y;) = cr% and Var(X;) = Jg(, and Cov(Y1, X1) = oyx. Also let ¥(Y;, X;,0) =Y; — 0X; be the

functional for #. This M-estimator leads to
A(OO) = HUX,

and
B(69) = E((Y1 — 60X1)?),
Therefore, we have
V(8) = E((Y1 - 60X1)%) /1% -

Notice that each of these must be estimated, which can be done by

1< 7\
B,(Y,0) =~ (Y _ XZ>

n =1 X

11 v\

X n i=1

Attached in the appendix is a simulation illustrating this example.



The third example illustrates how the delta method can be implemented with M-estimation.
Referring to example 1, suppose we are interested also in s, = /s2 and log(s2). We can define
¥3(Y;,0) = /Os — 03 and 14(Y;, 0) = log(6) — ;. These functions give the following matrices

1 0 0 0
0 1 00
AB) =19 — 1 10 |
2\/10920
0 —7- 0 1
20
1 B3
620 203, 00
H3 N4—9§o 00
B(OO) - 29%0 4930 )
0 0 0 0
0 0 0 O
and
13 M3
B0 H3 NS Oa
_ g2 ka0 pa—03
M3 Ha 020 21/020 950
V(OO) - K3 pa—03, pa—03,  pa—03,
2v/020 2v/020 44020 29%2
M4 pa—03, pa—03,  pa—63,
620 620 203/2 02,

This idea is illustrated via simulation in the appendix.

Continuing in the paper, we jump to section 4 to discuss the situations when 1 is a nonsmooth
function. More specifically, if 1) is not differentiable everywhere, we calculate the matrix A () as
A(6o) =

0 ——Ep[¢(Y1, 0)]‘

- 00T =00

Notice that here the expectation is taken with respect to the true distribution F. We quickly
discuss example 6 of the paper to illustrate this idea. Suppose we are interested in 6 that satisfies
S p(Y; — 6) = 0, where

D 2] <k,
Vi(z) = { sen(x)k |a| > k.

Observe that this 1 is continuous everywhere, however not differentiable at +k. By the new
definition of A(6y), we have

A(oo) = —§9EF -0,

=—— /W(y —0)f(y)dy ‘9:9

/ iy =), Fw)dy

- / Uhly — 00)f (y)dy



Also, we find that
B(60) = B[vA(Ys ~ 0)] = [ 0y~ 60) )iy

and thus 2 9 d
V(t) = Vel = 00) W)y

[ ¥ty = 0)f (w)dy]”
These can be estimated by A,(Y,0) =n~' 37" [—¢;€(E—é)] and B, (Y,0) = n 31 03 (Y;—6).

The last section that we explore of the paper is section 5, which discusses Regression M-
estimators. Consider the nonlinear model

Yi=9(xi,08)+e, i=1,..,n, (3)

where g is a known differentiable function in 3, the errors ey, ..., e, are independent with mean 0
and Var(e;) = a i=1,...,n, and x1, ..., X, are known constant vectors. Under this setting, define
the design matrlx X = (xl, ...;Xn)T. The least squares estimator of 3 satisfies

S (Vi - g(xi.B))d (xi.B) = 0

i=1

where the derivative of ¢ is the partial derivative with respect to 3 evaluated at B As in section
2, we expand the equation above about the true value By to obtain

1 n
V(B — Bo) = [ Z ' (Y}, x, 50)] \}HZ@b(Yi,Xiﬁo)Jﬂ/ﬁwa
i=1

where ¥(Y;, x4, Bo) = (Vi — 9(xi,B0))g’' (xi, Bo). From this, we obtain the estimate

S
.M:)

An(X, Y, Bo) = =D | = ¥/ (Yixi o)

=1

-

{gl(xz‘, Bo)d (xi, Bo)" — (Y; — g(xiB0))g” (xi, 50)]

S

=1

Now, taking the expectation with respect to the true model, Y gets dropped and we’re left with
n(X, Bo) = ZE[ (VixiBo)] = - Zg (i, B0)9/ (xi, Bo) " (4)
Next, if we assume that the limit exists, then define

A(Bo) = lim —ZE[ (¥, o)

n—oo N

T /e /(. T
= nlgréo E E 1 g (xi,80)9 (xi, Bo)" -
1=



Evaluating equation (4) at B will yield the estimator of A(Bp), which is

An(X,8) = 1 Z E[ — ' (Y5, %, Ba)} ]

As for the B matrix, we have
Bn(X,Y,B) = ZE[ YuXi,ﬁo)Tl’(Yz‘,Xiﬁo)T}

*ZU X’Lv/BO (Xivﬁo)Tv

which can be estimated by the mean-squared error

B,(X,Y ,6 % )¢(}/;,X¢,B)T
- - ip Z(n — glx1.8))% (1. B (. B)”.
=1

Next, we look at example 8 of the paper to illustrate these ideas relating to regression M-estimators.

Consider the nonlinear regression model in equation (3), where g(x;,3) = x! 3 and the least
squares estimator of 3 satisfying

n
Z Ur(Yi —x] B)x; =
i=1
where 1y, is the function defined in example 6. Then, we have

¥ (Yi, x5, B) = i (Vi — x; B)x;

Then, we obtain the matrices
An(X,Y, By) = Zwkezxz X/,

and so
1 n
An(X,B0) = D> E [%(Q)Xixz] :
i=1
Also, we have

(X, Bo) = ZEM e)xix] |.



Lastly, if the errors are identically distributed and by using the natural estimators for A,, and B,,
above, we have

Vo (X, Bo) = (XTX/n) " Elbg(er)?)/Eli (er)].

In summary, M-estimators represent a large class of statistics, i.e. maximum likelihood estima-
tors, sample moments, and even touches Bayesian estimators. Please refer to the Appendix section
below for simulations to examples 1 through 3.



Appendix

Example 1

The sample sizes are 10, 50, and 100. The samples are iid samples from N(1.3,0.8). Below is a
graph representing the asymptotical properties of M-estimation. We see that the estimated mean
variance (red line) is almost indistinguishable from the true mean variance (black line) and around
a sample size of 50 that the estimated variances (red line) become very close to the true values
(black line).
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Example 2

The sample sizes are 10, 50, and 100. The samples of Y are iid from N(1.3,0.8) and the samples
of X are iid from N(3,0.75). Here, we again see the asymptotics kick in relatively quickly around
a sample size of n = 50.
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Example 3

The sample sizes are 10, 50, and 100. The data are generated from N(3,0.5). As expected, we see
the asymptotics kick in and conclude that M-estimation is valid.
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