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The Calculus of M-Estimation by Stefanski and Boos gives a basic introduction and application
to M-Estimation. An M-estimator θ̂ is an estimator of θ that satisfies

n∑
i=1

ψ(Yi, θ̂) = 0, (1)

where Y1, ...,Yn are independent random vectors, θ is a p-dimensional parameter, and ψ is a
known (p×1)-functional that does not depend on i nor n. While many common estimators are not
M-estimators, they can be written in the form of an M-estimator called partial M -estimators. A
partial M -estimator is an estimator that alone is not an M-estimator, but is a component of an M-
estimator. For example, the mean deviation from the sample mean, θ̂1 = n−1

∑n
i=1 |Yi− Ȳ | because

there is no suitable ψ function such that
∑n

i=1ψ(Yi, θ) = 0 yields θ̂1. However, this is a partial

M-estimator since when combined with θ̂2 = Y and the two functionals ψ1(y, θ1, θ2) = |y− θ2| − θ1
and ψ2(y, θ1, θ2) = y − θ2, we have

n∑
i=1

ψ(Yi, θ̂1, θ̂2) =

 ∑n
i=1

(
|Yi − θ̂2| − θ̂1

)
∑n

i=1

(
Yi − θ̂2

)  =

(
0
0

)
.

In addition to M-estimators, we will see later that we can add ψ functions to handle delta-method
asymptotics for transformations of parameters, i.e. M-estimators are robust.

The basic approach of M-estimation is derived in section 2 of the paper. Assume, for now, that
Y1, ..., Yn are iid with distribution function F . The true parameter θ0 is defined by

EF
(
ψ(Y1,θ0

)
=

∫
ψ(y,θ0)f(y)dy = 0. (2)

If (2) above determines θ0 uniquely, then there exists a sequence of M-estimators {θ̂n} such that

θ̂n
p→ θ0. Define the function Gn(θ) = n−1

∑n
i=1ψ(Yi,θ). A Taylor expansion about the true

parameter θ0 gives
0 = Gn(θ̂) = Gn(θ0) + G′n(θ0)(θ̂ − θ0) + Rn,

where G′n(θ0) = ∂Gn(θ)
∂θT

∣∣∣
θ=θ0

. Rearranging the expansion, we arrive to

√
n(θ̂ − θ0) =

[
−G′n(θ0)

]−1√
nGn(θ0) +

√
nR?

n.
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Define ψ′(y,θ) = ∂ψ(y,θ)
∂θ . By the WLLN, as n→∞, we have

−G′n(θ0) =
1

n

n∑
i=1

[
−ψ′(Yi,θ0)

]
p→ E

[
−ψ′(Y1,θ0)

]
= A(θ0).

Therefore, by CLT, we have
√
nGn(θ0)

d→ MVN(0,B(θ0)),

where B(θ0) = E[ψ(Y1,θ0)ψ(Y1,θ0)
T ]. Note that

√
nR?

n
p→ 0, which is difficult to prove, but holds

under general assumptions. Combining the above results and appealing to Slutsky’s Theorem, we
conclude that

θ̂ ∼ AMN

(
θ0,

V(θ0)

n

)
as n → ∞, where V(θ0) = A(θ0)

−1B(θ0)
{
A(θ0)

−1}T . Lastly, this work can be extended beyond

equation (1). Suppose that we have an estimator, θ̂, that satisfies

n∑
i=1

ψ(Yi, θ̂) = cn,

where cn/
√
n

p→ 0. Repeating the derivations as before with the sole change that cn/
√
n is absorbed

into the remainder quantity
√
nR?

n, we arrive to the empirical estimators of A(θ0) and B(θ0),

An(Y, θ̂) = −G′n(θ̂) =
1

n

n∑
i=1

[
−ψ′(Yi, θ̂)

]
,

and

Bn(Y, θ̂) =
1

n

n∑
i=1

ψ(Yi, θ̂)ψ(Yi, θ̂)T

and
Vn(Y, θ̂) = An(Y, θ̂)−1Bn(Y, θ̂)

{
An(Y, θ̂)−1

}T
.

These ideas are now illustrated with examples.

The first example to illustrate M-estimation is to estimate the population mean and variance,
µ, and σ2. Let θ̂ = (Y , s2n)T be the M-estimator defined by

ψ(Yi,θ) =

(
Yi − θ1

(Yi − θ1)2 − θ2

)
.

Denoting the true parameter values by θ0 = (θ10, θ20), we have

A(θ0) = E
[
−ψ′(Y1,θ0)

]
= E

(
1 0

2(Y1 − θ10) 1

)
=

(
1 0
0 1

)
since E(Y1) = θ10. Also, the matrix

B(θ0) = E
[
ψ(Y1,θ0)ψ(Y1,θ0)

T
]
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has elements

B(θ0)11 = E
[
(Y1 − θ10)2

]
= θ20 = σ2

B(θ0)12 = B(θ0)21 = E
[
(Y1 − θ10)

(
(Y1 − θ10)2 − θ20

)]
= µ3 − 0 = µ3

B(θ0)22 = E
[(

(Y1 − θ10)2 − θ20
)2]

= µ4 − σ4,

which are estimated by

Bn(Y, θ̂)11 =
1

n

n∑
i=1

(Yi − Y )2 = s2n

Bn(Y, θ̂)12 = Bn(Y, θ̂)21 =
1

n

n∑
i=1

(Yi − Y )
(
(Yi − Y )2 − s2n

)
= m3

Bn(Y, θ̂)22 ==
1

n

n∑
i=1

(
(Yi − Y )2 − s2n

)2
= m4 − s4n,

where mk denotes the kth sample moment. Since the matrix A(θ0) need not be estimated, we
simply have Vn(Y, θ̂) = Bn(Y, θ̂). Attached in the appendix is a simulation illustrating this
example.

The second example of the paper shows how we can estimate the ratio of two population means.
Let θ̂ = Y /X, where (Y1, X1), ..., (Yn, Xn) are iid samples with E(Y1) = µY and E(X1) = µX 6= 0,
Var(Y1) = σ2Y and Var(X1) = σ2X , and Cov(Y1, X1) = σY X . Also let ψ(Yi, Xi, θ) = Yi − θXi be the

functional for θ̂. This M-estimator leads to

A(θ0) = µX ,

and
B(θ0) = E

(
(Y1 − θ0X1)

2
)
,

Therefore, we have
V(θ0) = E

(
(Y1 − θ0X1)

2
)
/µ2X .

Notice that each of these must be estimated, which can be done by

An(Y, θ̂) = X

Bn(Y, θ̂) =
1

n

n∑
i=1

(
Yi −

Y

X
Xi

)2

Vn(Y, θ̂) =
1

X
2

1

n

n∑
i=1

(
Yi −

Y

X
Xi

)2

.

Attached in the appendix is a simulation illustrating this example.
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The third example illustrates how the delta method can be implemented with M-estimation.
Referring to example 1, suppose we are interested also in sn =

√
s2n and log(s2n). We can define

ψ3(Yi,θ) =
√
θ2 − θ3 and ψ4(Yi,θ) = log(θ2)− θ4. These functions give the following matrices

A(θ0) =


1 0 0 0
0 1 0 0
0 − 1

2
√
θ20

1 0

0 − 1
θ20

0 1

 ,

B(θ0) =


1
θ20

µ3
2θ320

0 0

µ3
2θ320

µ4−θ220
4θ420

0 0

0 0 0 0
0 0 0 0

 ,

and

V(θ0) =



θ20 µ3
µ3

2
√
θ20

µ3
θ20

µ3 µ4 − θ220
µ4−θ220
2
√
θ20

µ4−θ220
θ20

µ3
2
√
θ20

µ4−θ220
2
√
θ20

µ4−θ220
44θ20

µ4−θ220
2θ

3/2
20

µ4
θ20

µ4−θ220
θ20

µ4−θ220
2θ

3/2
20

µ4−θ220
θ220


.

This idea is illustrated via simulation in the appendix.

Continuing in the paper, we jump to section 4 to discuss the situations when ψ is a nonsmooth
function. More specifically, if ψ is not differentiable everywhere, we calculate the matrix A(θ0) as

A(θ0) = − ∂

∂θT
EF
[
ψ(Y1,θ)

]∣∣∣
θ=θ0

.

Notice that here the expectation is taken with respect to the true distribution F . We quickly
discuss example 6 of the paper to illustrate this idea. Suppose we are interested in θ̂ that satisfies∑
ψk(Yi − θ̂) = 0, where

ψk(x) =

{
x |x| ≤ k,
sgn(x)k |x| > k.

Observe that this ψ is continuous everywhere, however not differentiable at ±k. By the new
definition of A(θ0), we have

A(θ0) = − ∂

∂θ
EF
[
ψk(Y1 − θ)

]∣∣∣
θ=θ0

= − ∂

∂θ

∫
ψk(y − θ)f(y)dy

∣∣∣
θ=θ0

=

∫
− ∂

∂θ
ψk(y − θ)

∣∣∣
θ=θ0

f(y)dy

=

∫
ψ′k(y − θ0)f(y)dy.
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Also, we find that

B(θ0) = E
[
ψ2
k(Y1 − θ0)

]
=

∫
ψ2
k(y − θ0)f(y)dy

and thus

V(θ0) =

∫
ψ2
k(y − θ0)f(y)dy[ ∫

ψ′k(y − θ0)f(y)dy
]2 .

These can be estimated by An(Y, θ̂) = n−1
∑n

i=1

[
−ψ′k(Yi−θ̂)

]
and Bn(Y, θ̂) = n−1

∑n
i=1 ψ

2
k(Yi−θ̂).

The last section that we explore of the paper is section 5, which discusses Regression M-
estimators. Consider the nonlinear model

Yi = g(xi,β) + ei, i = 1, ..., n, (3)

where g is a known differentiable function in β, the errors e1, ..., en are independent with mean 0
and Var(ei) = σ2i , i = 1, ..., n, and x1, ...,xn, are known constant vectors. Under this setting, define
the design matrix X = (x1, ...,xn)T . The least squares estimator of β satisfies

n∑
i=1

(Yi − g(xi, β̂))g′(xi, β̂) = 0

where the derivative of g is the partial derivative with respect to β evaluated at β̂. As in section
2, we expand the equation above about the true value β0 to obtain

√
n(β̂ − β0) =

[
1

n

n∑
i=1

−ψ′(Yi,x,β0)

]−1
1√
n

n∑
i=1

ψ(Yi,xi,β0) +
√
nR?n,

where ψ(Yi,xi,β0) = (Yi − g(xi,β0))g
′(xi,β0). From this, we obtain the estimate

An(X,Y,β0) =
1

n

n∑
i=1

[
−ψ′(Yi,xi,β0)

]
=

1

n

n∑
i=1

[
g′(xi,β0)g

′(xi,β0)
T − (Yi − g(xiβ0))g

′′(xi,β0)
]
.

Now, taking the expectation with respect to the true model, Y gets dropped and we’re left with

An(X,β0) =
1

n

n∑
i=1

E
[
−ψ′(Yi,xi,β0)

]
=

1

n

n∑
i=1

g′(xi,β0)g
′(xi,β0)

T . (4)

Next, if we assume that the limit exists, then define

A(β0) = lim
n→∞

1

n

n∑
i=1

E
[
−ψ′(Yi,xi,β0)

]
= lim

n→∞

1

n

n∑
i=1

g′(xi,β0)g
′(xi,β0)

T .
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Evaluating equation (4) at β̂ will yield the estimator of A(β0), which is

An(X, β̂) =
1

n

n∑
i=1

E
[
−ψ′(Yi,xi,β0)

]∣∣∣
β=β̂

=
1

n

n∑
i=1

g′(xi, β̂)g′(xi, β̂)T .

As for the B matrix, we have

Bn(X,Y,β0) =
1

n

n∑
i=1

E
[
ψ(Yi,xi,β0)ψ(Yi,xi,β0)

T
]

=
1

n

n∑
i=1

σ2i g
′(xi,β0)g

′(xi,β0)
T ,

which can be estimated by the mean-squared error

Bn(X,Y, β̂) =
1

n− p

n∑
i=1

ψ(Yi,xi, β̂)ψ(Yi,xi, β̂)T

=
1

n− p

n∑
i=1

(Yi − g(xi, β̂))2g′(xi, β̂)g′(xi, β̂)T .

Next, we look at example 8 of the paper to illustrate these ideas relating to regression M-estimators.

Consider the nonlinear regression model in equation (3), where g(xi,β) = xTi β and the least
squares estimator of β satisfying

n∑
i=1

ψk(Yi − xTi β̂)xi = 0,

where ψk is the function defined in example 6. Then, we have

ψ(Yi,xi,β) = ψk(Yi − xTi β)xi.

Then, we obtain the matrices

An(X,Y,β0) =
1

n

n∑
i=1

ψ′k(ei)xix
T
i ,

and so

An(X,β0) =
1

n

n∑
i=1

E
[
ψ′k(ei)xix

T
i

]
.

Also, we have

Bn(X,β0) =
1

n

n∑
i=1

E
[
ψk(ei)

2xix
T
i

]
.
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Lastly, if the errors are identically distributed and by using the natural estimators for An and Bn

above, we have

Vn(X,β0) =
(
XTX/n

)−1
E[ψk(e1)

2]/E[ψ′k(e1)]
2.

In summary, M-estimators represent a large class of statistics, i.e. maximum likelihood estima-
tors, sample moments, and even touches Bayesian estimators. Please refer to the Appendix section
below for simulations to examples 1 through 3.
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Appendix

Example 1

The sample sizes are 10, 50, and 100. The samples are iid samples from N(1.3, 0.8). Below is a
graph representing the asymptotical properties of M-estimation. We see that the estimated mean
variance (red line) is almost indistinguishable from the true mean variance (black line) and around
a sample size of 50 that the estimated variances (red line) become very close to the true values
(black line).
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Example 2

The sample sizes are 10, 50, and 100. The samples of Y are iid from N(1.3, 0.8) and the samples
of X are iid from N(3, 0.75). Here, we again see the asymptotics kick in relatively quickly around
a sample size of n = 50.
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Example 3

The sample sizes are 10, 50, and 100. The data are generated from N(3, 0.5). As expected, we see
the asymptotics kick in and conclude that M-estimation is valid.
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